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Influence of Pentachlorophenol on Light Emission
from Single Barnacle Muscle Fibers Preloaded
with Aequorin
E. Edward Bittar and Jin-ru Wu
Department of Physiology, University of Wisconsin, Madison, WI 53706 USA

Interest has been aroused by studies on the
pesticide pentachlorophenol (PCP), a
known cytotoxicant (1,2), that showed
PCB can stimulate the sodium efflux in
barnacle muscle fibers at a concentration as
low as 1 pM and that its efficacy, which
exceeds that of less-chlorinated phenols,
depends on external pH (pHe). Addition-
ally, the response of the sodium efflux to
PCP is a sigmoidal function of external
[Ca2], the requirement for external Ca2+
being absolute (3). These findings have
raised the question of whether PCP in-
creases internal free Ca+ by promoting the
entry of Ca2+ from the outside into the
myoplasm. This paper presents a study car-
ried out with the photoprotein aequorin in
an attempt to address the question of
whether stimulation of the sodium efflux is
due to a rise in internal free Ca2+ resulting
from the entry of Ca2+ (4) and whether the
efficacy of PCP depends on the number of
chlorine atoms in its aromatic ring, as well
as on the pH of the bathing medium
(pHe) 2+

Aequorin, rather than a Ca2+ dye sub-
stance such as Fura 2 or a Ca -selective
microelectrode, was chosen for several rea-
sons. First, the aequorin method has been
used with considerable success to study
internal Ca2+ transients in skeletal muscle,
most notably in barnacle fibers (5). Sec-
ond, the aequorin signal is known to be
relatively free from movement artifacts.
Third, aequorin shows high sensitivity to
Ca2+ and provides not only a sufficiently
rapid response time but also a high signal-
to-noise ratio. Fourth, aecuorin is adequate
for detecting internal Ca + transients over
the6physiological range of l x 10-7 to 5 x
10- M and lacks toxicity after injection
(6).
We obtained specimens of the barnacle

Balanus nubilus from Puget Sound, Seattle,
Washington, and kept them in an aerated
aquarium which was maintained at 10°-
12°C throughout the study. The methods
of dissection and cannulation of single
fibers were essentially the same as those
described by Bittar (2). The artificial sea
water (ASW) used had the following com-
position: NaCl 465 mM; KCI 10 mM;
MgCl2 10 mM; CaCl2 10 mM, NaHCO3
10 mM, and pH 7.8. We prepared solu-
tions with varying concentrations of Ca2+
by raising or reducing NaCl in osmotically
equivalent amounts. Solutions of PCP and
other chlorinated phenols and phenol were

prepared by dissolving them in dimethyl
sulfoxide (DMSO) before their addition to
ASW. The final content of DMSO in
ASW containing 5 x io-4 M PCP was
0.5% (v/v). We used the buffers Hepes and
Mops in lieu of HC03- in experiments
involving ASW at different pH values.

The microinjector used for loading the
cannulated fibers with aequorin was of the
type described by Bittar and Tallitsch (8).
A solution of 2-5 x 10-4 M aequorin in a
volume of 0.4-0.5 pl was injected axially
into these fibers with the aid of a microma-
nipulator and Palmer screw stand. Since
the intrafiber fluid volume was on average
40 p1, dilution by the myoplasm of the
injected solution was approximately 100-
fold. Aequorin was allowed to equilibrate
for at least 1 hr. In those fibers poisoned
with 10- M ouabain, external application
of this glycoside was carried out some 30
min before the application of pentachloro-
phenol (PCP) or any of its congeners.

The method used for recording ae-
quorin light output was a modification of
that described by Bittar and Keh (9) for
monitoring firefly luciferase luminescence.
Reading, display, and analysis of the
picoammeter data was carried out with the
aid of two software programs that were
written in our laboratory by Patrick Ham-
ilton. Experience with data processing
revealed that analysis is best carried out by
collating data based on experiments where
basal light emission from the fibers is rela-
tively the same. We estimated increments
in light emission on the basis of maximal
flash height; that is, by taking the differ-
ence between basal light emission and peak
emission, expressed in nanoamperes. Sig-
nificance levels were compared by using
Student's t-test. A significance level of
p<0.05 was selected. All experiments were
carried out at an environmental tempera-
ture of 22°-24'C. All reagents used were
analytical grade. Hepes, Mops, and oua-
bain were purchased from Sigma Chemical
Company (St. Louis, Missouri). Penta-
chlorophenol and other chlorinated phe-
nols and phenol were supplied by Aldrich
Chemical Company (Milwaukee, Wisconsin).

In the first series of experiments with
unpoisoned and ouabain-poisoned fibers,
we investigated the effect on basal light
output of external application of PCP at
varying concentrations. Initially, it was
necessary to determine whether the pres-
ence of DMSO (e.g., 0.5% in the bathing

medium) influences basal light output
from fibers (unpoisoned and ouabain poi-
soned) preloaded with aequorin. The
results obtained in such experiments show
that the presence of DMSO is without
effect on basal light output. The character-
istic signal observed in unpoisoned fibers
to external application of PCP (e.g., 5 x
10-4M within 10 min) is an oscillatory rise
in basal light emission, as illustrated in
Figure la. A peak response to PCP is not
immediate in onset. Such an experiment is
shown in Figure lb. Kinetics of this vari-
ety are also recorded with ouabain-poi-
soned fibers, but the onset of a peak
response is more rapid and may be fol-
lowed by a rather large, monophasic or
almost monophasic Ca2+ transient, as
shown in Figure Ic. Notice that the com-
parison drawn here is between fibers show-
ing fairly similar baseline levels of light
output.

It is noteworthy that the time to peak
in unpoisoned fibers exposed to PCP
shows a correlation with dosage only when
the dose of PCP used falls in the high
range. For example, time to peak in fibers
exposed to 10-4 M PCP averages 183 ± 73
sec (n = 5), a value that is not significantly
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different from that obtained with fibers
exposed to 2.5 or 5 x 10-4M PCP, but sig-
nificantly less than the values of 392 ± 27
sec (n = 6) and 402 ± 52 sec (n = 6)
obtained with fibers exposed to 7.5 x 10-
M and 10-3M PCP, respectively (p <0.02).
On the other hand, an analysis of width rat
half-peak response fails to provide a similar
correlation. Another feature that stands out
is an increase in the frequency of internal
transients in ouabain-poisoned fibers after
-exposure to PCP and that poisoned fibers
are considerably more sensitive to PCP
than unpoisoned fibers. For example,
fibers poisoned with 10-4 M ouabain and
exposed to 10-3M PCP 30 min later show
an increase in light emission, the magni-
tude of which averages 224 ± 29% (n = 3),
whereas the increase observed in unpoi-
soned fibers exposed to 10-3 M PCP aver-
ages 76 ± 17% (n = 3). The difference is
significant.

In the second series, we tried to estab-
lish the concentration-response curve for
the stimulatory effect of PCP on basal light
emission using unpoisoned fibers. The
time frame of the experiments was 10 min.
Two features of the curve shown in Figure
2 are notable: first, light output is in-
creased by PCP at a concentration as low
as 10 pM. This and a concentration of 50
pM fall in the toxic range for aquatic
organisms (10), as well as BF-2 cells
derived from blue gill sunfish (11). Sec-
ond, although a 10-fold elevation in PCP
concentration fails to elicit a further
increase in light output, a sharp inflexion
of the curve occurs thereafter with a larger
elevation in PCP concentration. Such
results are consistent with the hypothesis
that two mechanisms are operative: one
involving a plasmalemma site which is sat-
urated by PCP in low micromolar concen-
trations, and the other a myoplasmic site
which is not readily saturated by PCP after
its passage into the fiber interior.

In the third series of experiments, the
response to PCP as a function of pHe was
examined. Since PCP is a weak acid with a
PKa of 4.8 (12), experiments were done to
ascertain whether the efficacy of PCP
depends in part on the pH of the suspend-
ing medium. These experiments involved
the use of two different inert buffers,
Hepes (PKa 7.5) and Mops (PKa 7.2). The
results obtained with 10 mM Hepes ASW
containing 5 x 10-4M PCP show that light
emission is a sigmoidal function of the
medium pH. Light emission increases as
PHe is reduced. Similar results were ob-
tained using unpoisoned and ouabain-poi-
soned fibers suspended in 10 mM Mops-
ASW containing 5 x 10- M PCP. Sum-
marized in Figure 3 are the results ob-
tained with Mops as the buffer over a PHe
range of 8-6. Notice that pHe 8 (10 nM)
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Figure 1. (A) Time-course of aequorin signals
recorded from an unpoisoned fiber exposed to 5 x
10-4 M pentachlorophenol (PCP) at time indicated
by arrow. Light output is expressed in nanoam-
peres. (B) A lag period precedes the onset of a
marked outburst of light emission from aequorin.
The PCP concentration was 5 x 10'4 M. (C) Time-
course of a somewhat monophasic aequorin sig-
nal recorded from a fiber treated with 10-4 M
ouabain 30 min before exposure to 5 x 10-4 M pen-
tachlorophenol at time indicated by arrow.

is fairly close to the threshold value for
ouabain-poisoned fibers. Also notice that
the midpoint of the slope is about 100 nM
H+. In a typical experiment, an unpoi-
soned fiber suspended in 10 mM Mops-
ASW at pH 7 (i.e., 100 nM) shows a mul-
tiphasic rise in light emission when ex-
posed to 5 x 10 M PCP, as illustrated in
Figure 4a. The rise is from approximately
15 nA to less than 100 nA over less than
10 min. Multiphasic behavior is also seen
in ouabain-poisoned fibers suspended in
10 mM Mops containing 5 x 10-4M PCP
at pH 6 (1000 nM), but the peak response
is larger, as illustrated in Figure 4b. Notice
that the basal level of light output before
the addition of PCP is practically the same
as that of the fiber in the preceding experi-
ment.

Next, we studied the response to PCP
as a function of chlorine atoms. The
potency of chlorinated phenols is known

Figure 2. Concentration-response curve for the
stimulatory effect of pentachlorophenol on light
emission from aequorin in unpoisoned fibers.
Vertical bars indicate ±1 SEM; the number of
measurements carried out is in parentheses. All
fibers used were isolated from the same barnacle
specimen (log-log plot).
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Figu 3. (A) The dependency on PHe of the mag-
nitude of the increase in light emission in unpoi-
soned fibers and (B) ouabain-poisoned fibers in
response to external application of 5 x 10 4 M
pentachlorophenol in 10 mM Mops-ASW. Each
plotted point in panel A is the mean of six mea-
surements, except that at pH 6. Vertical bars indi-
cate ±1 SEM. The fibers used were isolated from
three barnacle specimens taken from the same
batch (semilog plot).
to increase with chlorination of the parent
phenol (3,10,13). Figure 5 shows a repre-
sentative experiment carried out with phe-
nol. External application of 5 x 10-4M
phenol in ASW containing 10 mM Hepes
at pH 7.4 produces a multiphasic rise in
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Figure 4. Time-course of a multiphasic aequorin
response of an ouabain-poisoned fiber suspended
in 10 mM Mops-ASW at (A) pH 7 and (B) pH 6 to
external application of 5 x 104 M pentachlorophe-
nol (PCP) at time indicated by arrow. Notice the
brief lag period preceding the onset of a rise in
basal light emission in panel A.

light emission, but the maximum magni-
tude of this response is rather small. In
view of such results, experiments were
done in which a fixed concentration of 5 x
i0-4 M of phenol, dichlorophenol, tri-
chlorophenol, tetrachlorophenol, and pen-
tachlorophenol was used for purposes of
comparing their efficacy. Shown in Figure
6 is clear-cut evidence that an increase in
light output in response to the application
of these substances in equimolar concen-
tration is a function of the number of chlo-
rine atoms, pentachlorophenol being the
most efficacious. To be certain of this con-
clusion, the experiments were repeated.
The results obtained confirmed our con-
clusion.

Finally, experiments were carried out
to determine whether the response to PCP

2+depends on external Ca . Using the recent
results that the stimulatory response of the
sodium efflux to PCP is a sigmoidal func-
tion of external Ca2+ and that the require-
ment for external Ca2+ is absolute (3),
studies with ASW containing Ca2+ at vary-
ing concentrations were undertaken.
Figure 7 illustrates that the magnitude of
the observed rise in light emission after the
application of 5 x 10 M PCP depends on
the external Ca2+ concentration and that
PCP is ineffective in the nominal absence
of Ca2+ in the bathing medium. Other
experiments, however, indicate that, on
occasion, a small increase in basal light
emission is observed with 5 x 104M PCP.
This is accounted for by assuming that
some Ca+ is retained in the fluid of the
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Figure 5. Time-course of the multiphasic response
obtained by external application (attime indicated
by arrow) of 5 x 10 4 M phenol. Notice that the
outbursts in light emission are rather small.

channels of the transverse tubular system
of these fibers.

The experiments described here show
quite clearly that PCP is able to increase
light emission from fibers preloaded with
aequorin and that the threshold concentra-
tion of PCP is practically the same as that
required for stimulation of the basal sodi-
um efflux (3). The failure of basal light
emission to rise after the addition of PCP
to nominally Ca2-free ASW is in agree-
ment with the results of Nwoga and Bittar
(3), who found that the sodium efflux rises
after exposure of these fibers to PCP only
if external Ca + is present in the bathing
medium. Although the provisional conclu-
sion which emerges is that "trigger" Ca2+
derives from the bathing medium, the pos-
sibility still remains that a fraction of the
Ca + comes from internal storage sites,
such as the sarcoplasmic reticulum. This
possibility is not unlikely considering evi-
dence that ryanodine and TMB, both of
which act as blockers of the sarcoplasmic
reticulum Ca+ release channel, are able to
reduce the response of the sodium efflux to
PCP (3). It could be that the increase in
internal free Ca2+ caused by PCP is partl
the result of IP3-promoted release of Ca +
from the sarcoplasmic reticulum, but there
is evidence that the ouabain-insensitive
sodium efflux is unresponsive to the injec-
tion of IP3 (14). This is also true of thapsi-
gargin (Bittar EE, unpublished data).
Another possibility is that PCP, a known
uncoupl?r (15,16), might cause the release
of Ca + from mitochondria, as well as a
reduction in internal ATP-Mg. However,
neither possibility seems likely, partly
because the classical uncoupler 2,4-dinitro-
phenol is without effect on the sodium
efflux (Bittar EE, unpublished data), and
partly because phosphagen occurs in abun-
dance in these fibers [e.g., 31P-NMR
reveals an ArP content of 24 mmol/kg
fiber water (17)].

There is circumstantial evidence favor-
ing the view that the Ca+ channel (L-type
in barnacle fibers) is a primary point of
action of PCP and that external Ca2+
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Figure6. Comparison of the potency of phenol and
four chlorinated derivatives. The ouabain-poi-
soned fibers were suspended in 10 mM Hepes-
ASW at pH 7.4. The concentrations used were
equimolar (5 x 10w M). Vertical bars indicate ±1
SEM; the number of individual experiments car-
ried out is in parentheses. The fibers used in
these experimental sessions were isolated from
three barnacle specimens taken from the same
batch.
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largely related to the operation of the
Na -Ca2+ exchanger in the reverse mode.
Because ATP behaves as a positive effector
of this exchanger in barnacle fibers (20),
we suggzest that PCP stimulates reverse
Na+-Ca exchange as the result of transi-
torily raising the internal ATP level. This is
likely to be the case if PCP acts as a com-
petitive inhibitor of certain ATP-depen-
dent processes. Evidence supporting this
possibility comes from recent studies car-
ried out with the firefly luciferase reaction
in vitro ( Xiang Z, Bittar EE, unpublished
data). PCP is found to increase the Km for
ATP but not affect Vm.. Because a specific
and powerful inhibitor of the Na'-Ca2+
exchanger is not yet available (21), this
rather interesting problem cannot be
addressed in a direct manner at this time.

The pH-reaction profile is a sigmoid
curve with a mid-point of about pH 7.
This is compatible with a mechanism
involving ionization of a group located in
an active site, e.g., the Ca +-channel pro-
tein that facilitates the passage of external
calcium into the myoplasm after interac-
tion ofPCP at this active site. An addition-
al explanation of the observed dependency
of PCP potency on pHe is to invoke the
law of nonionic diffusion (22,23). In other
words, protonation of PCP renders it more
lipophilic, thus leading to greater entry of
the neutral species (e.g., into the plas-
malemma compartment per se). This could
bring about changes in lipid bilayer organi-
zation. Thus, to understand more fully the
mechanism underlying the action of PCP,
information is required not only about the
role of the Ca2+ channel but also about
whether PCP affects membrane fluidity.
Until now, the few studies carried out with
synthetic lipid bilayer membranes and bio-
logical membranes indicated that PCP in
the micromolar range alters the physical
properties of these systems (24-26).
Another approach is to use an equilibrium
model: this shows that at pH values less
than pH 7 the distribution of the weak
acid, e.g., between octanol and water, is
dominated by the neutral species and does
not depend on ionic strength (27). Such
studies remain meager but are in keeping
with the classical studies of Goodnight,
who was the first to demonstrate that PCP
can be toxic and that lowering pH potenti-
ates this toxicity (28).

Finally, this study draws attention to
the possibility that the cytotoxic action of
PCP may be chiefly due to a raised cytoso-
lic free Ca2+ concentration (29). Although
human deaths have taken place after acute
industrial, accidental, or suicidal exposure
to PCP, the minimal lethal blood concen-

tration remains unknown (2). Whole-body
exposure to PCP and urinary levels in the
general population are very low [0.001-
0.17 mg/person/day and 1-10 pg/l, respec-
tively (30)]. Aquatic species show extreme
susceptiblity to PCP toxicity. This is borne
out by evidence of an LC value for PCP
of about 1 pM (31,3X, which is a concen-
tration close to that found to cause a rise in
internal free Ca in barnacle fibers.
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